7 References

Adolphs, R. (2015). The unsolved problems of neuroscience. Trends in Cognitive Sciences, 19(4), 173–175. https://doi.org/10.1016/j.tics.2015.01.007

Albuquerque, V. H. C. de, Damaševičius, R., Tavares, J. M. R. S., & Pinheiro, P. R. (2018). EEG-Based Biometrics: Challenges And Applications. Computational Intelligence and Neuroscience, 2018, e5483921. https://doi.org/https://doi.org/10.1155/2018/5483921

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., … Milham, M. P. (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4(1), 1–26. https://doi.org/10.1038/sdata.2017.181

Amico, E., & Goñi, J. (2018). The quest for identifiability in human functional connectomes. Scientific Reports, 8(1), 8254. https://doi.org/10.1038/s41598-018-25089-1

Armstrong, B. C., Ruiz-Blondet, M. V., Khalifian, N., Kurtz, K. J., Jin, Z., & Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing, 166, 59–67. https://doi.org/10.1016/j.neucom.2015.04.025

Bastos, A. M., & Schoffelen, J.-M. (2016). A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Frontiers in Systems Neuroscience, 9. https://doi.org/10.3389/fnsys.2015.00175

Biazoli, C. E., Salum, G. A., Pan, P. M., Zugman, A., Amaro, E., Rohde, L. A., … Sato, J. R. (2017). Commentary: Functional connectome fingerprint: identifying individuals using patterns of brain connectivity. Frontiers in Human Neuroscience, 11, 47. https://doi.org/10.3389/fnhum.2017.00047

Center for Open Science. (2020). The Open Science Framework. Retrieved from https://www.cos.io/products/osf

Chan, H.-L., Kuo, P.-C., Cheng, C.-Y., & Chen, Y.-S. (2018). Challenges and Future Perspectives on Electroencephalogram-Based Biometrics in Person Recognition. Frontiers in Neuroinformatics, 12. https://doi.org/10.3389/fninf.2018.00066

Demuru, M., & Fraschini, M. (2020). EEG fingerprinting: Subject-specific signature based on the aperiodic component of power spectrum. Computers in Biology and Medicine, 120, 103748. https://doi.org/10.1016/j.compbiomed.2020.103748

Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., … Hariri, A. R. (2020). What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychological Science, 1–15. https://doi.org/10.1177/0956797620916786

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303. https://doi.org/10.1038/nrn2258

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage, 160, 140–151. https://doi.org/10.1016/j.neuroimage.2017.03.064

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664–1671. https://doi.org/10.1038/nn.4135

Fraschini, M., Pani, S. M., Didaci, L., & Marcialis, G. L. (2019). Robustness of functional connectivity metrics for EEG-based personal identification over task-induced intra-class and inter-class variations. Pattern Recognition Letters, 125, 49–54. https://doi.org/10.1016/j.patrec.2019.03.025

Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews, 37(4), 610–624. https://doi.org/10.1016/j.neubiorev.2013.02.015

Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation. Neuron, 98(2), 439–452.e5. https://doi.org/10.1016/j.neuron.2018.03.035

Hu, B., Liu, Q., Zhao, Q., Qi, Y., & Peng, H. (2011). A Real-Time Electroencephalogram (EEG) Based Individual Identification Interface for Mobile Security in Ubiquitous Environment. 2011 IEEE Asia-Pacific Services Computing Conference, 436–441. https://doi.org/10.1109/APSCC.2011.87

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079

Kong, W., Wang, L., Xu, S., Babiloni, F., & Chen, H. (2019). EEG Fingerprints: Phase Synchronization of EEG Signals as Biomarker for Subject Identification. IEEE Access, 7, 121165–121173. https://doi.org/10.1109/ACCESS.2019.2931624

Kostílek, M., & Št’astný, J. (2012). EEG biometric identification: Repeatability and influence of movement-related EEG. 2012 International Conference on Applied Electronics, 147–150.

Kriegeskorte, N. (2015). Crossvalidation in Brain Imaging Analysis. bioRxiv, 017418. https://doi.org/10.1101/017418

La Rocca, D., Campisi, P., & Scarano, G. (2012). EEG biometrics for individual recognition in resting state with closed eyes. 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), 1–12.

La Rocca, D., Campisi, P., Vegso, B., Cserti, P., Kozmann, G., Babiloni, F., & Fallani, F. D. V. (2014). Human Brain Distinctiveness Based on EEG Spectral Coherence Connectivity. IEEE Transactions on Biomedical Engineering, 61(9), 2406–2412. https://doi.org/10.1109/TBME.2014.2317881

Maiorana, E., La Rocca, D., & Campisi, P. (2016). On the Permanence of EEG Signals for Biometric Recognition. IEEE Transactions on Information Forensics and Security, 11(1), 163–175. https://doi.org/10.1109/TIFS.2015.2481870

Marcel, S., & Millan, J. D. R. (2007). Person Authentication Using Brainwaves (EEG) and Maximum A Posteriori Model Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 743–752. https://doi.org/10.1109/TPAMI.2007.1012

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., … Dosenbach, N. U. F. (2020). Towards Reproducible Brain-Wide Association Studies. bioRxiv, 2020.08.21.257758. https://doi.org/10.1101/2020.08.21.257758

Ruiz-Blondet, M. V., Jin, Z., & Laszlo, S. (2016). CEREBRE: A Novel Method for Very High Accuracy Event-Related Potential Biometric Identification. IEEE Transactions on Information Forensics and Security, 11(7), 1618–1629. https://doi.org/10.1109/TIFS.2016.2543524

Seitzman, B. A., Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B., Dworetsky, A., … Petersen, S. E. (2019). Trait-like variants in human functional brain networks. Proceedings of the National Academy of Sciences, 116(45), 22851–22861. https://doi.org/10.1073/pnas.1902932116

Speelman, C., & McGann, M. (2013). How Mean is the Mean? Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00451

Thomas, K. P., & Vinod, A. P. (2018). EEG-Based Biometric Authentication Using Gamma Band Power During Rest State. Circuits, Systems, and Signal Processing, 37(1), 277–289. https://doi.org/10.1007/s00034-017-0551-4

Wechsler, D. (2008). Wechsler adult intelligence scale–fourth edition (WAIS–IV). San Antonio: Pearson Assessment.

Wechsler, D. (2014). Wechsler intelligence scale for children-fifth edition (WISC-V). San Antonio: Pearson Assessment.

Zhang, R., Kranz, G. S., & Lee, T. M. C. (2019). Functional Connectome from Phase Synchrony at Resting State is a Neural Fingerprint. Brain Connectivity, 9(7), 519–528. https://doi.org/10.1089/brain.2018.0657